DeepBrainPrint: A Novel Contrastive Framework for Brain MRI Re-Identification Lemuel Puglisi, Frederik Barkhof, Daniel C. Alexander, Joffrey Parker, Arman Eshaghi, Daniele Ravì

BACKGROUND AND MOTIVATIONS

Re-identification is the process of locating previous scans of the same patient within a large dataset

- This process is crucial for several reasons, including:
- access and compare historical medical information
- monitoring patient progress over time
- treatment planning

EXISTING APPROCHES

Reference	Description
Wachinger et al, 2015	Study of the geometry of the brain using Laplace-Beltrami operator
Valizadeh et al, 2018	Characterization of the brain through quantitative measurements of its anato structures
Chauvin et al, 2020	Image feature extraction through the 3D Rank algorithm

MAIN LIMITATIONS

- \succ Reliance on computationally intensive processes using manually engineered features
- Struggle with achieving robust generalization across diverse modalities

DeepBrainPrint generates a fingerprint from **brain MRI** scans, utilizing **deep metric learning** based on two distinct loss functions:

1. a fully-supervised: $L_c = -\log \frac{\exp(sim\left(e_a^{(i)}, e_p^{(i)}\right)/\tau)}{\exp(sim\left(e_a^{(i)}, e_p^{(i)}\right)/\tau) + \exp(sim\left(e_a^{(i)}, e_n^{(i)}\right)/\tau)}$

2. a self-supervised: $L_{BT} = \sum_{i} (1 - c_{ii})^2 + \lambda \sum_{i} \sum_{i \neq i} c_{ij}^2$

The final loss L_{DBP} is determined by a weighting function $\beta(t)$ that combines the individual losses L_c and L_{BT}

$$L_{DBP} = \beta(t) L_{BT} + (1 - \beta(t))L_C \qquad where \ \beta(t) = 1 - \frac{t}{H}$$

The workflow of DeepBrainPrint is divided into two main branches

Proposed transformations used for image distortion during training

Transformation	Type	$\mathbf{p_i}$
Negative of the image	Intensity-based	40%
Intensity shifts	Intensity-based	40%
Bias field	Intensity-based	30%
Rotations	Structural-based	100%
Random black patches	Structural-based	40%
Elastic deformation	Structural-based	30%

ig the

omical

D SIFT-

Take a picture to download the full paper

RESULTS

		ettin	gs	ADNI		SYNT-CONTR	
Method	$\widehat{\mathbf{FS}}$	$\widehat{\mathbf{SS}}$	$\widehat{\mathbf{DT}}$	R@3	mAP@3	R@3	mAP@3
SIM-based (Wang et al., 2004)		No training		96.89	90.21	76.68	48.86
3D SIFT-Rank (Chauvin et al., 2020)	No training		100.00	100.00	81.77	63.71	
Barlow Twins (Zbontar et al., 2021)		\checkmark		73.06	45.35	48.70	25.52
Barlow Twins with our transformations		\checkmark	\checkmark	97.41	90.47	92.23	79.62
SimCLR (Chen et al., 2020)		\checkmark		68.39	38.47	51.30	24.55
SimCLR with our transformations		\checkmark	\checkmark	87.05	67.63	70.98	39.94
NCA (Goldberger et al., 2004)	\checkmark		\checkmark	96.89	90.34	72.02	48.10
MLKR (Weinberger and Tesauro, 2007)	\checkmark		\checkmark	96.37	90.03	72.02	48.07
SoftTriple (Qian et al., 2019)	\checkmark		\checkmark	98.45	91.97	96.89	87.64
Proxy-NCA (Movshovitz-Attias et al., 2017)			\checkmark	98.45	90.80	94.82	84.86
InfoNCE (Oord et al., 2018)	\checkmark		\checkmark	96.89	94.04	95.34	86.95
DeepBrainPrint (Proposed)	\checkmark	\checkmark	\checkmark	99.48	95.54	98.96	91.00

EXAMPLES OF WRONG RETRIEVALS

Query scan

CONCLUSIONS

DeepBrainPrint has potential for various clinical applications: \succ searching for scans with similar brain shapes, lesions, or atrophy Support diagnostic decisions on new patients \succ suggest effective treatments for similar disease subtypes/stages

We tested **DeepBrainPrint** on 2 different datasets: 1. a large dataset of 795 T1-weighted brain MRIs from (ADNI) 2. a synthetic dataset designed to evaluate retrieval performance with different image modalities (SYNT-CONTR)

SALIENCY MAPS

Correct retrieval 📕 Wrong retrieval

