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BACKGROUND AND MOTIVATIONS METHODS RESULTS
Re-identification is the process of locating previous scans of the DeepBrainPrint generates a fingerprint from brain MRI scans, We tested DeepBrainPrint on 2 different datasets:
same patient within a large dataset utilizing deep metric learning based on two distinct loss functions: 1. a large dataset of 795 T1-weighted brain MRIs from (ADNI)
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MAIN LIMITATIONS

» Reliance on computationally intensive processes using
manually engineered features
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. L L . CONCLUSIONS
» Struggle with achieving robust generalization across diverse , o | | o o
modalities €errnnnnn Take a picture to DeepBrainPrint has potential for various clinical applications:
download the full paper » searching for scans with similar brain shapes, lesions, or atrophy

» support diagnostic decisions on new patients
» suggest effective treatments for similar disease subtypes/stages
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